p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.205C23, C23.219C24, C22.572+ 1+4, C22.402- 1+4, C42⋊21(C2×C4), C42⋊5C4⋊4C2, C4.4D4⋊23C4, (C23×C4).51C22, C23.17(C22×C4), C23.8Q8⋊11C2, (C22×C4).484C23, C22.110(C23×C4), (C2×C42).423C22, C23.23D4.6C2, (C22×Q8).90C22, C24.C22⋊11C2, C2.9(C22.32C24), (C22×D4).109C22, C23.67C23⋊17C2, C2.22(C22.11C24), C2.C42.54C22, C2.21(C23.33C23), C2.11(C22.36C24), (C4×C4⋊C4)⋊30C2, (C2×Q8)⋊14(C2×C4), C2.22(C4×C4○D4), C22⋊C4⋊14(C2×C4), (C4×C22⋊C4)⋊35C2, (C2×D4).130(C2×C4), (C2×C4).521(C4○D4), (C2×C4⋊C4).814C22, (C2×C4).227(C22×C4), (C2×C4.4D4).16C2, C22.104(C2×C4○D4), (C2×C22⋊C4).432C22, SmallGroup(128,1069)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.205C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=db=bd, f2=b, g2=c, gag-1=ab=ba, ac=ca, ad=da, ae=ea, faf-1=abc, bc=cb, fef-1=be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, eg=ge, gfg-1=bcf >
Subgroups: 508 in 270 conjugacy classes, 136 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C2.C42, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4.4D4, C23×C4, C22×D4, C22×Q8, C4×C22⋊C4, C4×C4⋊C4, C42⋊5C4, C23.8Q8, C23.23D4, C24.C22, C23.67C23, C2×C4.4D4, C24.205C23
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C4○D4, C24, C23×C4, C2×C4○D4, 2+ 1+4, 2- 1+4, C4×C4○D4, C22.11C24, C23.33C23, C22.32C24, C22.36C24, C24.205C23
(5 13)(6 14)(7 15)(8 16)(9 46)(10 47)(11 48)(12 45)(17 33)(18 34)(19 35)(20 36)(21 63)(22 64)(23 61)(24 62)(25 57)(26 58)(27 59)(28 60)(37 52)(38 49)(39 50)(40 51)
(1 42)(2 43)(3 44)(4 41)(5 36)(6 33)(7 34)(8 35)(9 46)(10 47)(11 48)(12 45)(13 20)(14 17)(15 18)(16 19)(21 52)(22 49)(23 50)(24 51)(25 57)(26 58)(27 59)(28 60)(29 53)(30 54)(31 55)(32 56)(37 63)(38 64)(39 61)(40 62)
(1 29)(2 30)(3 31)(4 32)(5 13)(6 14)(7 15)(8 16)(9 27)(10 28)(11 25)(12 26)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(23 39)(24 40)(41 56)(42 53)(43 54)(44 55)(45 58)(46 59)(47 60)(48 57)(49 64)(50 61)(51 62)(52 63)
(1 44)(2 41)(3 42)(4 43)(5 34)(6 35)(7 36)(8 33)(9 48)(10 45)(11 46)(12 47)(13 18)(14 19)(15 20)(16 17)(21 50)(22 51)(23 52)(24 49)(25 59)(26 60)(27 57)(28 58)(29 55)(30 56)(31 53)(32 54)(37 61)(38 62)(39 63)(40 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 39 42 61)(2 62 43 40)(3 37 44 63)(4 64 41 38)(5 12 36 45)(6 46 33 9)(7 10 34 47)(8 48 35 11)(13 26 20 58)(14 59 17 27)(15 28 18 60)(16 57 19 25)(21 55 52 31)(22 32 49 56)(23 53 50 29)(24 30 51 54)
(1 28 29 10)(2 25 30 11)(3 26 31 12)(4 27 32 9)(5 21 13 37)(6 22 14 38)(7 23 15 39)(8 24 16 40)(17 64 33 49)(18 61 34 50)(19 62 35 51)(20 63 36 52)(41 59 56 46)(42 60 53 47)(43 57 54 48)(44 58 55 45)
G:=sub<Sym(64)| (5,13)(6,14)(7,15)(8,16)(9,46)(10,47)(11,48)(12,45)(17,33)(18,34)(19,35)(20,36)(21,63)(22,64)(23,61)(24,62)(25,57)(26,58)(27,59)(28,60)(37,52)(38,49)(39,50)(40,51), (1,42)(2,43)(3,44)(4,41)(5,36)(6,33)(7,34)(8,35)(9,46)(10,47)(11,48)(12,45)(13,20)(14,17)(15,18)(16,19)(21,52)(22,49)(23,50)(24,51)(25,57)(26,58)(27,59)(28,60)(29,53)(30,54)(31,55)(32,56)(37,63)(38,64)(39,61)(40,62), (1,29)(2,30)(3,31)(4,32)(5,13)(6,14)(7,15)(8,16)(9,27)(10,28)(11,25)(12,26)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(41,56)(42,53)(43,54)(44,55)(45,58)(46,59)(47,60)(48,57)(49,64)(50,61)(51,62)(52,63), (1,44)(2,41)(3,42)(4,43)(5,34)(6,35)(7,36)(8,33)(9,48)(10,45)(11,46)(12,47)(13,18)(14,19)(15,20)(16,17)(21,50)(22,51)(23,52)(24,49)(25,59)(26,60)(27,57)(28,58)(29,55)(30,56)(31,53)(32,54)(37,61)(38,62)(39,63)(40,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,39,42,61)(2,62,43,40)(3,37,44,63)(4,64,41,38)(5,12,36,45)(6,46,33,9)(7,10,34,47)(8,48,35,11)(13,26,20,58)(14,59,17,27)(15,28,18,60)(16,57,19,25)(21,55,52,31)(22,32,49,56)(23,53,50,29)(24,30,51,54), (1,28,29,10)(2,25,30,11)(3,26,31,12)(4,27,32,9)(5,21,13,37)(6,22,14,38)(7,23,15,39)(8,24,16,40)(17,64,33,49)(18,61,34,50)(19,62,35,51)(20,63,36,52)(41,59,56,46)(42,60,53,47)(43,57,54,48)(44,58,55,45)>;
G:=Group( (5,13)(6,14)(7,15)(8,16)(9,46)(10,47)(11,48)(12,45)(17,33)(18,34)(19,35)(20,36)(21,63)(22,64)(23,61)(24,62)(25,57)(26,58)(27,59)(28,60)(37,52)(38,49)(39,50)(40,51), (1,42)(2,43)(3,44)(4,41)(5,36)(6,33)(7,34)(8,35)(9,46)(10,47)(11,48)(12,45)(13,20)(14,17)(15,18)(16,19)(21,52)(22,49)(23,50)(24,51)(25,57)(26,58)(27,59)(28,60)(29,53)(30,54)(31,55)(32,56)(37,63)(38,64)(39,61)(40,62), (1,29)(2,30)(3,31)(4,32)(5,13)(6,14)(7,15)(8,16)(9,27)(10,28)(11,25)(12,26)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(41,56)(42,53)(43,54)(44,55)(45,58)(46,59)(47,60)(48,57)(49,64)(50,61)(51,62)(52,63), (1,44)(2,41)(3,42)(4,43)(5,34)(6,35)(7,36)(8,33)(9,48)(10,45)(11,46)(12,47)(13,18)(14,19)(15,20)(16,17)(21,50)(22,51)(23,52)(24,49)(25,59)(26,60)(27,57)(28,58)(29,55)(30,56)(31,53)(32,54)(37,61)(38,62)(39,63)(40,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,39,42,61)(2,62,43,40)(3,37,44,63)(4,64,41,38)(5,12,36,45)(6,46,33,9)(7,10,34,47)(8,48,35,11)(13,26,20,58)(14,59,17,27)(15,28,18,60)(16,57,19,25)(21,55,52,31)(22,32,49,56)(23,53,50,29)(24,30,51,54), (1,28,29,10)(2,25,30,11)(3,26,31,12)(4,27,32,9)(5,21,13,37)(6,22,14,38)(7,23,15,39)(8,24,16,40)(17,64,33,49)(18,61,34,50)(19,62,35,51)(20,63,36,52)(41,59,56,46)(42,60,53,47)(43,57,54,48)(44,58,55,45) );
G=PermutationGroup([[(5,13),(6,14),(7,15),(8,16),(9,46),(10,47),(11,48),(12,45),(17,33),(18,34),(19,35),(20,36),(21,63),(22,64),(23,61),(24,62),(25,57),(26,58),(27,59),(28,60),(37,52),(38,49),(39,50),(40,51)], [(1,42),(2,43),(3,44),(4,41),(5,36),(6,33),(7,34),(8,35),(9,46),(10,47),(11,48),(12,45),(13,20),(14,17),(15,18),(16,19),(21,52),(22,49),(23,50),(24,51),(25,57),(26,58),(27,59),(28,60),(29,53),(30,54),(31,55),(32,56),(37,63),(38,64),(39,61),(40,62)], [(1,29),(2,30),(3,31),(4,32),(5,13),(6,14),(7,15),(8,16),(9,27),(10,28),(11,25),(12,26),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(23,39),(24,40),(41,56),(42,53),(43,54),(44,55),(45,58),(46,59),(47,60),(48,57),(49,64),(50,61),(51,62),(52,63)], [(1,44),(2,41),(3,42),(4,43),(5,34),(6,35),(7,36),(8,33),(9,48),(10,45),(11,46),(12,47),(13,18),(14,19),(15,20),(16,17),(21,50),(22,51),(23,52),(24,49),(25,59),(26,60),(27,57),(28,58),(29,55),(30,56),(31,53),(32,54),(37,61),(38,62),(39,63),(40,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,39,42,61),(2,62,43,40),(3,37,44,63),(4,64,41,38),(5,12,36,45),(6,46,33,9),(7,10,34,47),(8,48,35,11),(13,26,20,58),(14,59,17,27),(15,28,18,60),(16,57,19,25),(21,55,52,31),(22,32,49,56),(23,53,50,29),(24,30,51,54)], [(1,28,29,10),(2,25,30,11),(3,26,31,12),(4,27,32,9),(5,21,13,37),(6,22,14,38),(7,23,15,39),(8,24,16,40),(17,64,33,49),(18,61,34,50),(19,62,35,51),(20,63,36,52),(41,59,56,46),(42,60,53,47),(43,57,54,48),(44,58,55,45)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4L | 4M | ··· | 4AF |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C24.205C23 | C4×C22⋊C4 | C4×C4⋊C4 | C42⋊5C4 | C23.8Q8 | C23.23D4 | C24.C22 | C23.67C23 | C2×C4.4D4 | C4.4D4 | C2×C4 | C22 | C22 |
# reps | 1 | 2 | 1 | 1 | 2 | 2 | 4 | 2 | 1 | 16 | 8 | 3 | 1 |
Matrix representation of C24.205C23 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 2 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 3 |
G:=sub<GL(8,GF(5))| [1,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,3,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,3,3,0,0,0,0,2,0,0,0,0,0,0,0,3,3,0,0],[4,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0],[2,3,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,3,3] >;
C24.205C23 in GAP, Magma, Sage, TeX
C_2^4._{205}C_2^3
% in TeX
G:=Group("C2^4.205C2^3");
// GroupNames label
G:=SmallGroup(128,1069);
// by ID
G=gap.SmallGroup(128,1069);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,568,758,219,100,675,192]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d*b=b*d,f^2=b,g^2=c,g*a*g^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f^-1=a*b*c,b*c=c*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,e*g=g*e,g*f*g^-1=b*c*f>;
// generators/relations